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Power-law model of manufacturing cost progress:
a great success of parametric analysis

Power-law model of manufacturing cost progress:Power-law model of manufacturing cost progress:
a great success of parametric analysisa great success of parametric analysis
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How about development programs?How about development programs?How about development programs?
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The Norden/Rayleigh model for time-phasing
of expenditures in development programs

TheThe Norden Norden//RayleighRayleigh model for time-phasing model for time-phasing
of expenditures in development programsof expenditures in development programs

• Enjoys strong support from data on actual
programs

• Useful for forecasting cost-to-go and time-to-go
for development programs, given expenditures vs
time for an initial period

• Is a particular case of a more general perspective
on development programs’ costs
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The Rayleigh ModelTheThe Rayleigh Rayleigh Model Model

• Norden (1963) proposed that development
projects absorb resources according to the
cumulative Rayleigh distribution function:

( )v t d e at( ) = − −1
2

v is earned value, which may be measured by
expenditures. {available, e. g., for U. S. DoD programs
as Actual Cost of Work Performed (ACWP) data in
Contractor Progress Reports (CPRs)}
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Applications of Rayleigh methodApplications ofApplications of Rayleigh Rayleigh method method

• L. Putnam, 1976 and later, to software development
projects; leads to SLIM commercial estimating package

• D. Boger and students at Naval Postgraduate School, 1982
and later, to DoD development programs

• D. Lee and colleagues, OSD Cost Analysis Improvement
Group, 1989 and later, to DoD development programs
(Gallagher, M., and D. Lee, Mil. Op. Rsch. 2, 1996)

• G. Christle and colleagues, OUSD(A), task LMI (D. Lee
and colleagues) to integrate Rayleigh analysis tool into
their Contract Analysis System (CAS) (1998)
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The Norden-Rayleigh model collapses data from
many DoD development programs onto one curve
TheThe Norden Norden--RayleighRayleigh model collapses data from model collapses data from

many DoD development programs onto one curvemany DoD development programs onto one curve
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Shapes of Rayleigh cumulative expenditure
and expenditure rate curves

Shapes ofShapes of Rayleigh Rayleigh cumulative expenditure cumulative expenditure
and expenditure rate curvesand expenditure rate curves
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Some standard points on the
curves

Some standard points on theSome standard points on the
curvescurves
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Some standard expressions for
Rayleigh curve parameters

Some standard expressions forSome standard expressions for
RayleighRayleigh curve parameters curve parameters

t
ap =

1

2
a

tp

=
1

2 2Peak expenditure time tp and parameter a: ;

Implies finite completion time tc : t
ac ≡

− ln( . )0 03
a

tc

=
− ln( . )0 03

2
;

By convention, finite completion time is when expenditures = 97% of parameter d:

Implies final cost D = 0.97 d .
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Rayleigh curve with finite
completion time

RayleighRayleigh curve with finite curve with finite
completion timecompletion time

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time/tc

(C
u

m
u

la
ti

ve
 c

o
st

)/
D



Resource Analysis GroupLMI 12

Using N-R to spread a
development estimate
Using N-R to spread aUsing N-R to spread a
development estimatedevelopment estimate

If total estimated cost is D $BY and estimated completion time is tc, then
cumulative expenditure at time t is E $BY, where

E
D

e t
t

c= −








0 97

1
0 03

2
2

.
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Using N-R to spread a
development estimate
Using N-R to spread aUsing N-R to spread a
development estimatedevelopment estimate

Expenditure between times t1 and t2:
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Using N-R to estimate cost-to-go and
time-to-go, given initial ACWP data

Using N-R to estimate cost-to-go andUsing N-R to estimate cost-to-go and
time-to-go, given initial ACWP datatime-to-go, given initial ACWP data

• Basic idea is simple:  given (t1, E1), (t2, E2),
..., (tM, EM), find d and a such that
d[1 - exp(-at2)] is a “good” fit

• Then 0.97d is an estimate of total cost, and
sqrt(-0.03/a) is an estimate of completion
time.
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Parameter estimation is
computationally tractable
Parameter estimation isParameter estimation is

computationally tractablecomputationally tractable

An example: ( )[ ]min

,a d

y d ei
at

N
i− −∑ −1
2

1

2

Define z a ei
at i( ) ≡ − −1

2

.  Then minimizing a is determined by

( )( ) ( )( )y z z z y z z z⋅ ⋅ ′ − ⋅ ′ ⋅ = 0

which is readily solved numerically (e. g. by bisection, or by Newton’s method).
Given a, d follows from

d
y z

z z
= ⋅

⋅
( )

( )
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For devotees of linear regression:For devotees of linear regression:For devotees of linear regression:

( )y y d e ei i
at ati i− = −−

− −−

1
1

2 2

= −−
−2

2

1adt e t ti
at

i i
i* ( )

where ,   whose existence is guaranteed by the first mean value theorem,

is determined by 2
2

1
2 2

at e e ei
at at ati i i* *− − −= −−

t i
*

.  Numerical computation

of t i
* is straightforward, by Newton’s method or by bisection.
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For devotees of linear regression:For devotees of linear regression:For devotees of linear regression:

Consequently, 

ln
( )

ln( )
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*y y
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so that one may obtain estimates for a and d from the regression coefficients

obtained by regressing ln
( )*

y y

t t t
i i

i i i

−
−



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
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−
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1

1

on t2.

Be careful, however: the usual linear regression assumptions about the statistics
of observation errors may well not be met!
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There’s a problem if data only
represent early times

There’s a problem if data onlyThere’s a problem if data only
represent early timesrepresent early times

• The two very different
N-R curves are quite
close for early times

• Problem is, that when
at2 << 1,
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( ) ( )d e d at O a tat1
2 2 2 4− = +− ( )

If data come only for times small compared with tp, it’s hard to estimate both tc and D
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N-R for “early” dataN-R for “early” dataN-R for “early” data

• Difficult to estimate both total time and total cost
if all data are for times less than about one-half tp,
which is about 20% of tc.

• Often helpful to use information on one of
completion time or total cost, to get estimates on
the other that areconsistent with early cost data.

• For example, one can see if a given cost estimate
is consistent with early cost data, and a given
estimate of completion time.
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Example N-R for “early” dataExample N-R for “early” dataExample N-R for “early” data

Choose a completion time tc.  Fit the model
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to the data, by adjusting only D.
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Using the N-R model to estimate cost-to-
go and time-to-go, given ACWP data

Using the N-R model to estimate cost-to-Using the N-R model to estimate cost-to-
go and time-to-go, given ACWP datago and time-to-go, given ACWP data

• Apply a parameter-identification method to
estimate time-scale parameter a and cost-
scale parameter d, with consistent estimates
of dispersion (uncertainty).  Many methods
are available.

• Estimate completion time and total cost,
with dispersion (uncertainty) estimates,
from the a and d estimates.
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One method: MMAEOne method: MMAEOne method: MMAE

• Multiple Model Adaptive Estimation is a
method for estimating parameters of
dynamic systems, given time-history data.

• Uses set of Kalman filters, which require a
parametric model for the time evolution of
the system.

Gallager, M., and D. Lee, “Final-Cost Estimates for Research &
Development Programs Conditioned on Realized Costs,” 
Mil. Ops Rsch. 2, 1996, pp 51 - 65
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N-R time-evolution modelN-R time-evolution modelN-R time-evolution model

dv

dt
a d

v

d a
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If v = d[1 - exp(-at2)], then
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Evolution of earned valueEvolution of earned valueEvolution of earned value

If v(t0) = v0, then for t > t0,
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Kalman filterKalmanKalman filter filter

• Given a system evolution model, Kalman
filter estimates system state as a linear
combination of the state predicted by the
evolution model, and noisy observations of
the state.  For us, “state” is earned value v.

• Parameter k is called the gain of the filter

v est k v pred k v obs( ) ( ) ( ) ( )= − +1

Maybeck, P., “Stochastic Models, Estimation and Control: Volume 1,
Academic Press, New York, 1979
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Kalman filterKalmanKalman filter filter

v t k V t a d t v t kzn n n n n+
+ +

+= − +1 11( ) ( ) ( ; , , ( )),
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MMAEMMAEMMAE

• MMAE considers a bank of Kalman filters, each
determined by three parameters (a, d, k), and
determines probability that these are correct, given
the ACWP data.

Maybeck, P., “Stochastic Models, Estimation, and Control: Volume 2
Academic Press, New York, 1982

Maybeck, P. S., and K. P. Hentz, “Investigation of Moving-Bank, Multiple
Model Adaptive Algorithms,” AIAA Journal of Guidance, Control, and 
Dynamics 10, 1987, pp. 771-101
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Schematic of MMAE ProgramSchematic of MMAE ProgramSchematic of MMAE Program

Make constant-dollar 
ACWP

Make filter bank:  make 
ranges of a, d, and k

Run filters;use 
residuals to compute 

probabilities

Any filters' 
residuals > 3 times 

min residual?

Discard low-probability 
filters

Run filters; use 
residuals to compute 

probabilities

Compute marginals on 
a,d; tc, D; compute 

bivariate (tc, D) 
distribution



Resource Analysis GroupLMI 30

Outputs from MMAE
parameter identification
Outputs from MMAEOutputs from MMAE

parameter identificationparameter identification

• Marginal distribution functions of total cost
and total time, conditioned on the data

• Joint bivariate PDF of total cost and total
time, conditioned on the data

• Can present costs either as $BY or as $TY
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An ExampleAn ExampleAn Example

11/15/94 0
12/31/94 1.9

3/31/95 26.8
6/25/95 65.4
9/24/95 114.6

10/22/95 135.1
12/31/95 163.4

2/25/96 198.1
6/23/96 272.6
9/22/96 330

11/24/96 370.8
3/23/97 433.1
6/22/97 479
9/21/97 520.6

12/31/97 559
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Constant-dollar ACWPConstant-dollar ACWPConstant-dollar ACWP

11/15/94 0 0
12/31/94 1.9 1.9 0.86011 1.634209 1.634209
3/31/95 26.8 24.9 0.85593 21.31265 22.94686
6/25/95 65.4 38.6 0.852142 32.89269 55.83954
9/24/95 114.6 49.2 0.848153 41.72912 97.56866

10/22/95 135.1 20.5 0.846929 17.36205 114.9307
12/31/95 163.4 28.3 0.843877 23.88173 138.8124
2/25/96 198.1 34.7 0.841444 29.19811 168.0106
6/23/96 272.6 74.5 0.836096 62.28919 230.2997
9/22/96 330 57.4 0.831979 47.75558 278.0553

11/24/96 370.8 40.8 0.82914 33.82891 311.8842
3/23/97 433.1 62.3 0.823804 51.32299 363.2072
6/22/97 479 45.9 0.819553 37.61749 400.8247
9/21/97 520.6 41.6 0.815318 33.91722 434.7419

12/31/97 559 38.4 0.810643 31.12867 465.8706
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Plot of ACWP dataPlot of ACWP dataPlot of ACWP data
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Optimal filter output and dataOptimal filter output and dataOptimal filter output and data

Comparison of MMAE Expected Filter Output and Data
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Norden-Rayleigh ExtrapolationNordenNorden--RayleighRayleigh Extrapolation Extrapolation

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

Years  f rom  s tart

C
u

m
u

la
ti

ve
 e

xp
en

d
it

u
re

s 
(C

o
n

st
. d

o
lla

rs
)

D a ta

M M AE ext rapolat ion



Resource Analysis GroupLMI 36

Marginal distribution of
completion time

Marginal distribution ofMarginal distribution of
completion timecompletion time

CDF of Completion Time
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Marginal distribution of total costMarginal distribution of total costMarginal distribution of total cost

CDF of Total Cost
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Bivariate distribution of cost and
time

BivariateBivariate distribution of cost and distribution of cost and
timetime
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The red square is the 
center of the bivariate 
normal approximation 
to the distribution of the 
expected values
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Cost CDF - $BYCost CDF - $BYCost CDF - $BY

Marginal Cumulative Distribution Function of Final Cost
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PAC-3  (PNO = 148 and CNO = 3)
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Cost CDF for 4-year ProgramCost CDF for 4-year ProgramCost CDF for 4-year Program

Cumulative Distribution on Final Cost, when 
Completion Time is Fixed at the Value Assigned on "Start" Sheet
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Comparison with EVMS
(formerly C/SCSC)

Comparison with EVMSComparison with EVMS
(formerly C/SCSC)(formerly C/SCSC)

• If EVMS planning estimates include all
required work, and if they under- or over-
estimate by exactly the same ratio for all
parts of the project, EVMS EAC based on
CPI will be accurate

• If planning estimates are better for initial
phases than for later ones, initial EVMS
forecasts will be optimistic.
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ExampleExampleExample
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Rayleigh isn’t the only possible
expenditure vs time function

RayleighRayleigh isn’t the only possible isn’t the only possible
expenditureexpenditure vs vs time function time function

• Basic ingredient is time evolution model

dv

dt
F v= ( )

which may be identified using non-parametric methods of 
system identification
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SummarySummarySummary

• Rayleigh analysis gives parametric model of
development program expenditures

• Method strongly supported by data from U.
S. DoD development programs

• Generates forecasts cost-to-go and time-to-
go; time-phasing of total-cost estimates


